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Abstract

The nonlinear development of the most unstable Ggrtler vortex mode in boundary

layer flows over curved walls is investigated. The most unstable GSrtler mode is confined

to a viscous wall layer of thickness O(G -l/s) and has spanwise wavelength 0(G-1/5); it

is, of course, most relevant to flow situations where the GSrtler number G >> 1. The

nonlinear equations governing the evolution of this mode over an O(G -a/s) streamwise

lengthscale are derived and are found to be of a fully nonparallel nature. The solution of

these equations is achieved by making use of the numerical scheme used by IIall (1988) for

the numerical solution of the nonlinear G5rtler equations valid for O(1) GSrtler numbers.

Thus, the spanwise dependence of the flow is described by a Fourier expansion whereas the

streamwise and normal variations of the flow are dealt with by employing a suitable finite

difference discretization of the governing equations. Our calculations demonstrate that,

given a suitable initial disturbance, after a brief interval of decay, the energy in all the

higher harmonics grows until a singularity is encountered at some downstream position.

The structure of the flow field as this singularity is approached suggests that the singularity

is responsible for the vortices, which are initially confined to the thin viscous wall layer,

moving away from the wall and into the core of the boundary layer.

1This research was partially supported by the National Aeronautics and Space Administration under NASA

Contract No. NAS1-18605 while the authors were in residence at the Institute for Computer Applications in

Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.
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1. Introduction

Our concern is with the effect of nonlinearity on the growth of the most unstable GSrtler

mode in the high Reynolds number flow over a wall of variable curvature. The most

unstable GSrtler mode was recently identified by Denier, Hall and Seddougui (1991) who,

in the context of the receptivity problem for GSrtler vortices, re-examined the linear

GSrtler equations in the limit of large GSrtler number. This analysis, while considering

both the inviscid G6rtler vortex modes of O(1) wavenumber and the right-hand branch

modes of O(G 1/4) wavenumber (G being the GSrtler number) previously considered by

Hall (1982a), was able to demonstrate the existence of a most unstable G3rtler mode.

This mode was found to lie in the wavenumber regime O(G 1/5) with a spatial growth

rate O(G 3/5) and was found to be confined to a thin, 0(G-1/5), viscous layer located

at the material boundary. This should be compared with the inviscid and right-hand

branch GSrtler modes which have growth rates 0(G1/2). Note that it is readily shown

that for the temporal evolution of G6rtier vortices the growth rates are of O(G 1/2) over

the whole wavenumber spectrum; in fact the temporal evolution of the GSrtler vortex

modes is of no practical interest since in situations where G6rtler vortices are found to

occur experimentally their initial development is apparently independent of time.

Previous investigations into the nonlinear evolution of GSrtler vortices are limited to the

work of Hall (1988), in which the fully nonlinear GSrtler governing equations were solved

numerically for both O(1) wavenumber and GSrtler number, and that of Hall and Lakin

(1988), in which a fully nonlinear mean flow-first harmonic theory is developed for the

right-hand branch GSrtler modes. (See also Aihara (1976) who derived a nonlinear differ-

ential equation to determine the evolution of GSrtler vortices; this calculation, however,

ignores nonparallel effects present due to boundary layer growth and employs other ap-

proximations which cannot be justified). The results of Hall (1988), which are applicable

to O(1) wavenumbers and GSrtler numbers for which a full numerical treatment of the

nonlinear equations governing the vortex evolution is required, demonstrated that as the

vortex evolved downstream the energy of the flow becomes concentrated in the mean flow

correction and fundamental harmonic. These results, coupled with the fact that the effect

of nonlinearity in this problem is to stabilize the flow, suggest that the far downstream
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structure of the velocity field is governed by a first harmonic/mean flow theory. Moti-

vated by these results, together with the earlier weakly nonlinear theory of Hall (1982b),

Hall and Lakin (1988) subsequently developed a first harmonic/mean flow theory for short

wavelength, large amplitude GSrtler vortices. (We note that the small wavelength approx-

imation inherent in this theory is not physically unrealistic since for a growing boundary

layer the effective wavenumber of the GSrtler vortices increases in the downstream direc-

tion). This theory then demonstrates that the mean flow adjusts due to the presence of

the vortex state so as to render the large amplitude vortices neutrally stable. The mean

flow is then driven by the vortex velocity field and its form is completely altered from that

which exists in the absence of the vortex motion. Subsequently Hall and Seddougui (1990)

showed that the large amplitude vortex states found by Hall and Lakin (1988) are unstable

to wavy vortex modes trapped in the shear layers bounding the region of vortex activity.

The above results, however, are not directly applicable to situations where the GSrtler

number is large and the wavenumber is not close to its neutral value. Here we would expect,

on the basis of the linear receptivity theory of Denier et al (1991), the most unstable, linear,

GSrtler mode to be excited by, for example, small localized surface imperfections. One such

area where this scenario would be applicable is the flow over turbine blades where, due

to the large Reynolds number encountered in such situations together with an appreciable

curvature, we would anticipate large GSrtler numbers and thus the possible excitation of

the most unstable GSrtler mode through the presence of small surface defects. For these

reasons a study of the nonlinear evolution of the most unstable Ggrtler modes is both

warranted and is of real practical importance.

The outline of the rest of the paper is as follows. In §2 we derive the nonlinear equations

governing the downstream evolution of the most unstable GSrtler vortex mode. A brief

discussion of the numerical scheme employed to solve these equations is given. In §3 we

present the results of our numerical calculations along with a discussion of these results.

Finally in §4 we draw some conclusions.

2. Formulation of the governing equations

Consider the flow of a viscous incompressible fluid, of density p and kinematic viscosity v,

over a wall of variable curvature a "1X(x/L). Here a and L are the typical length scales



associatedwith the radius of curvature of the wall and the downstreamdevelopmentof the

flow, respectively. Denoting by Uoo the free stream speed, sufficiently far from the wall,

we define the usual Reynolds number Re by

Uo_L
Re = , (2.1)

V

and restrict our attention to the limit Re _ oe with the GSrtler number, G, defined by

v = 2LR,'/2, (2.2)
a

held fixed. Let (x, y, z) denote the usual Cartesian co-ordinates, nondimensionalized with

respect to L, LRe -1/2, LRe -1/2 respectively. The corresponding velocity field is taken to

be

u = uo_(_,+ u,Re-'/_(_ + v),Re-'/2w), (2.3)

where, we will assume that, (fi(x,y), _(x, y)) corresponds to the Blasius boundary layer

and (u, v, w) and the corresponding pressure perturbation p are functions of (x, y, z). By

substituting the above relations into the Navier-Stokes and continuity equations we find

the governing equations for u,v,w and p, correct to O(Re-1/2), to be given by

u_ + v_ + w, = O,

uyy --J-Uzz -- v_ty = _tUx -q- _txu q- _uy -t- Q1,
(2.4)

Here the functions Q1, Q2, Q3 are nonlinear and are given by

Q1 = uux + vu_ + WUz,

1

Q2 = uv_ + vvy + wv_ + -_Gxu 2,

Q3 = uw,: + vw_ + wwz.

(2.5)

By setting the nonlinear terms Q1, Q2, Q3 equal to zero in (2.4) we recover the linearized

equations of Hall (1983). In the limit of large spanwise wavenumber, O/Oz >> 1, Hall

(1982a) demonstrated that in this regime the right-hand branch of the neutral curve
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scales as G = O(k4), where k >> 1 is the spanwise wavenumber, and that the evolution of

the GSrtler vortices in this regime can be readily understood without recourse to any type

of ad hoc assumptions concerning the, so called, nonparallel terms which are inherently

present in the system due to the underlying boundary layer growth. A subsequent re-

analysis of the linearized form of the system (2.4) by Denier, Hall and Seddougui (1991)

demonstrated that in the large GSrtler number limit, G >> 1, there is a G6rtler vortex

mode of maximum growth rate O(G s/s). It is found to occur in the wavenumber regime

k = O(G 1/5) and is confined to a thin O(G -1/s) viscous layer situated at the wall. This

should be compared with both the right-hand branch calculation of Hall (1982a), who

found that the growth rate for this mode is of order G 1/2 with wavenumber O(G 1/4) and

is confined to a thin internal viscous layer and the inviscid G6rtler vortex mode considered

by Denier et al (1991), which was found to have growth rate O(G 1/2) with wavenumber

O(1); see figure 1 for a schematic representation of the wavenumber/growth rate curve.

For O(1) values of the G6rtler number the fully nonlinear system (2.4) has been solved

numerically by Hall (1988). However, in situations in which the GSrtler number is large,

the results of this work would be of limited relevance since we would expect that in this

case the most unstable linear GSrtler mode would soon dominate the flow field. In fact,

the receptivity problem for the most unstable mode has been considered by Denier et al

(1991) who demonstrated that the coupling coefficient between a surface perturbation and

the induced velocity field is an 0(1) quantity and as such we would expect these modes to

be generated by, for example, isolated roughness elements on the surface.

To consider the nonlinear development of the most unstable GSrtler mode we define new

variables

Y -- al/5y, Z -- G 1/5 z, X -- a3/5(x - x*), (2.6)

and expand the velocity field and pressure in the form

(u,v,w,p) = G1/5(G-2/SU, V, W, G1/sP) +.... (2.7)

Here, the scaling in X anticipates the result from Denier et al (1991) that the downstream

growth rate of the most unstable GSrtler mode is 0(G3/5). The governing equations (2.4)

4



then become, to leading order in powers of G -1/5,

Ux + Vy + Wz = O,

Uyy Ae UZZ - #(x*)V : #YUx + UUx Av VUy "Jr WUz,

1 • 2

Vyy + Vzz - X(x *)#YU - PY = #YVx + UVx + gVy --[-WVz + "_X(X )U ,

Wyy + Wzz - Pz = #YWx + UWx + VWy + WWz,

where we have made use of the fact that _ _ #(x*)y + ... as y ---* 0. With a suitable

rescaling we can remove the constant coefficients in the above system, and hence, without

loss of generality, we will assume # = X = I in the above system. The governing equations

are then
Ux + Vv + Wz = O,

Uyv + Uzz - V = YUx + UUx + VU¥ + WUz,
(2.8)1

Vyy 4- Vzz -- YU - Py = YVx + UVx + VVy + WVz + 2 U2 ,

Wyy ']- WZZ -- Pz = YWx + UWx + VWy + WWz.

The boundary conditions appropriate to the above system are found to be

U = V = W =O Y=O,

(2.9)

U _ A(X) Y --_ oo,

where the displacement function A is independent of Z (ensuring that the nonlinear vortex

state is confined to the wall layer). To complete the description of the flow regime we

require a region where y = O(1) in which the mean flow adjusts to its free stream value.

However that region is passive so we shall not consider it here.

In order to reduce the system (2.8) to a form suitable for computational purposes we

eliminate W and P from the linear terms in (2.8c,d) to give

--O--y--_+ -O-_ - Y -_--_ --O-_--ff+ -_-ff V - g U z z = - N l x v + N 2z z - N 3Y z , (2.10)

where
Na = UUx + VUv + WUz,

N2 = UVx + VVv + WVz + 2 U 2 ,

N3 = UWx + VWv + WWz.

(2.11)

5



The numerical procedure employed in the solution of (2.8a,b) and (2.10) subject to the

boundary conditions (2.9) is based on that used by Hall (1988), in the solution of the

nonlinear Ggrtler equations at O(1) GSrtler numbers, and for this reason we give only the

salient details of the scheme here (the reader is referred to the aforementioned paper for

full details).

Anticipating the well known result that nonlinear interactions in the GSrtler problem do

not generate a mean flow component in the spanwise direction we write

00 O0

(U,V)=(Uo,Vo)+ E(Un, Vn)cosnkz, W= EWnsinnkz, (2.12)
n----1 n=l

where, without loss of generality, we have chosen the origin in the spanwise direction such

that U and V are even in Z whilst W is odd in Z. Substituting the expansions (2.12)

into (2.8a,b) and (2.10) and equating like Fourier components gives, for the mean flow

correction

Uoyy - Vo = YUox + UoUox + VoUoy + F0, (2.13)

where
oo

1

Fo = _ E {VmUmy - UrnVmy - 2kmUmWm} ,

rn_ l

whilst V0 is determined from
OUo ovo
o---g+ oY - o. (2.14)

From a computational standpoint we must necessarily truncate the infinite sums occurring

in (2.12) at some suitably large value of the upper limit. Therefore we will formally replace

the upper limit in (2.12) by N.

The governing equation for the higher harmonics terms is then given by

U,_y - n2k2Vr_ - (1 + UoY)Yn - (Y -']- Uo)UnX : Fn

N-1

= E Vn-mUmY - Un-mWmy - mkWn-mUm - rnkUn_mWra
rn=l

n_l

N--n

+ E Vn.-l-mUmY -- Unq-mWmY - mkWn+mUm -- mkUn+mWm

rrl _ l

n._ N

N

q- _ Vm-nUmy -- Um-nVmy -- mk_/Vm-nUm -- mkUm-nlYm,

rn=narl

n¢N

(2.15)

6



wherewe have made useof the continuity equation to eliminate the X-derivatives on Urn

from the nonlinear terms on the right hand side of (2.15). A similar equation governing

the evolution of the components Vn can be obtained from (2.10) which, for the sake of

brevity, is not presented here.

We now proceed with a brief description of the scheme used to solve (2.13), (2.15) together

with the corresponding equation for the V,. Suppose then that Do, V0 and Un, Vn, Wn, for

n = 1, 2,. -., N are known at some particular X-station, X0 say. The mean flow equation

(2.13) is discretized using finite differences in the X- and Y-directions according to

{ _ 2v ,m+l + v:m+ _
(2.16)

= e + 2-h +

Here the indices rn and n refer to the grid point X = Xo + me, Y = nh. Initially the

nonlinear terms on the right-hand side of (2.16) are evaluated with k = m- 1 which yields a

tridiagonal system for U0 at X = X0 + (m+ 1)e. Similarly the finite difference discretization

of (2.15) can be used to give Um (m = 1,...,N) at X = X0 + (m + 1)e as can the

corresponding equation for Vm, but now by solving a pentadiagonal system. The nonlinear

terms can now be expressed in terms of the velocity field evaluated at X = X0 + (m + 1)e

and the equations are again solved for the flow quantities at X = X0 + (m + 1)e, repeating

the iteration procedure until the changes in U_ +1 etc are sufficiently small. In this way

(2.16) and the corresponding equations for Urn, Vm are solved for k = rn by iterating on

the nonlinear terms on the right-hand sides. This scheme can then be used to march

the solution downstream from some initial position given some suitable form of initial

perturbation to the velocity field.

3. Results and discussion

We now describe the results obtained from the numerical scheme outlined above. All

results presented are for the choice of wavenumber k = 0.476 which corresponds to the

critical wavenumber of the most unstable GSrtler mode identified by Denier et al (1991);

7



somediscussionon the form of the solutions for different valuesof the wavenumberwill be

given. The basic state wasperturbed at X = 1 by imposing the disturbance

Ay 6

UI(Y) - 8 exp(-Y2/2), Vl (Y) _---_0, (3.1)

and integrating the linearized equations to X = 101. Here A is a measure of the disturbance

amplitude. At this stage the disturbance has attained its maximum growth rate according

to linear theory (see Denier et al (1991)). The linear velocity field was then given an

amplitude equal to the maximum X-velocity component whilst all higher harmonics were

set equal to zero. The nonlinear equations were then integrated for X > 101.

We note that the precise form of the initial perturbation (3.1) is of little importance in the

linear stage of the evolution of the most unstable mode. This can be seen by considering

the linearized version of the governing equations; a comparison between the present work

and the eigenvalue problem of Denier et al (1991) (see their equation (5.14)) shows that the

linearized governing equations, subject to the initial condition (3.1), constitute an initial

value problem corresponding to the given spanwise wavenumber. Thus, given any reason-

able initial condition (ie one which satisfies all the boundary conditions on the disturbance

velocity field) the solution of the linearized equations will evolve downstream into the char-

acteristic shape of the eigenfunction of Denier et al (1991) (in fact, the downstream form

of the velocity field will be a constant multiple of this eigenfunction) and the linear growth

rate will approach the value found from the eigenvalue problem; for the results presented

here this corresponds to k = 0.476, /5 = 0.312 (here/3 is the linear growth rate). This

should be compared with the corresponding results of Hall (1983), for the evolution of

vortices with O(1) Ggrtler number, where the growth rate and the structure of the linear

modes exhibit a sensitive dependence on both the form of the initial disturbance and the

position at which the initial disturbance is imposed. This difference is readily explained by

the fact that the most unstable mode of Denier et at (1991) evolves in, what is essentially, a

parallel manner (due in turn to the small x scale over which these modes develop) whereas

the linear modes of Hall (1983) exhibit an inherent nonparallel structure (due to _he O(1)

x-scale over which these modes develop).
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In order to measure the growth of the harmonic components of the flow field we define the

energy of the nth harmonic to be

En = / {U2(X,Y) + Vn2(X,Y) + W2n(X,Y)} dY, n = 1,2,.... (3.2)
0

Note that we do not calculate the energy of the mean flow correction as in Hall (1988)

since in the present case we have Uo _ Uo(X) when Y _ oo. The growth rate an(X) of

the nth mode is then defined as

a.(X) - 1 dE.(X) (3.3)
E.(X) dX

In the absence of the nonlinear terms the growth rate al (X) would be twice that calculated

by Denier et al (1991); in light of the discussion of the previous paragraph al (X) _ 0.624

as X _ oo (see figure 2).

With the perturbation to the basic state given by (3.1) the governing equations were solved

for the choice of parameters h = 0.1, c = 0.001 with Y_ = 100 (corresponding to 1000 grid

points in the normal direction). These values were chosen after significant testing of the

code for accuracy and stability. With h fixed the calculations were carried out for various

values of e until the results from consecutive runs agreed to within graphical accuracy. The

streamwise step size e was then fixed and h was decreased, with Yoo fixed, until, again, the

results from consecutive calculations had converged, to within graphical accuracy. We then

fixed both e and h and varied Yo¢ which resulted in little or no change in the computed

flow quantities. It was found that the numerical scheme was stable for e = O(h2). In figure

3 we present a comparison between calculations performed for e = 0.002 and e = 0.001

with the normal step-length h -- 0.1 fixed (see figure caption). Up until the stage at

which the calculation for e -- 0.001 fails the results are identical (note that the results for

e -- 0.002 have been offset). However, there is a small, yet significant, discrepancy on the

position at which the breakdown occurs. We interpret this discrepancy in the breakdown

position which occurs for the larger of the two values of e as being due to the numerical

scheme, essentially, 'jumping' over the breakdown position and continuing into a region

where, in fact, the numerical code is no longer valid. Various calculations were done for



which N = 4, 8 and 16 Fourier modes in the spanwise direction were retained; the results

presented are for the case N = 8 (the results from the calculations for N = 4 and N = 16

show little, if any variations from those obtained for N = 8). In figure 4 we present a

comparison of the results obtained with N = 8 and N = 16 Fourier modes retained in

the expansions (2.12). Again the results are identical, to within graphical accuracy for

the two cases. (Note that the discrepancy in the breakdown positions for the N = 8 and

N = 16 calculations is due to the increased streamwise step-length required to make the

latter calculation feasible). The parameter values quoted above were then chosen with

two criteria in mind; firstly they were chosen to be suitably small in order to resolve both

the normal and streamwise structure of the flow in the later stages of the calculations

and secondly were chosen so as to allow the calculations to be performed in an acceptable

amount of time. All results presented were obtained on a Cray Y-MP situated at the

NASA Langley Research Centre.

In figure 5 we present a plot of the energy of the nth harmonic as a function of downstream

position x. Here we see that, after an initial interval of decay due to the solution rapidly

adjusting from its linear state to a fully nonlinear state in which the mean flow correction

is driven by the vortex velocity field, the energy in each mode is a monotonically increasing

ft_nction of x. This was found to continue until such point as the energy in each harmonic

undergoes a period of rapid growth (occurring over a small streamwise interval). However,

at this stage of the calculation a point of separation has been encountered resulting in

reversed flow. Our numerical scheme is then no longer valid, as it relies on the parabolic

nature of the governing equations and as such is not able to deal with the reversed flow

in the streamwise direction. Numerous calculations were performed in order to verify this;

in particular, increasing the number of modes retained in our expansions from N = 8 to

N = 16. The results from this calculation were found to agree with that for N = 8 Fourier

modes to within the graphical accuracy of figure 5. Similarly, decreasing the step size in

the streamwise direction was found to have little effect on the results of the calculation.

All results presented were obtained for the input disturbance amplitude A = 0.075. In

order to test the effect of varying the amplitude of the initial disturbance velocity field

we repeated our calculations for various values of the amplitude A. The results of these

10
m



calculations demonstrated that varying /k had no qualitative effect upon the breakdown

which is encountered for the case presented, namely /X = 0.075; decreasing /X has the

effect of delaying the breakdown. For this reason we restrict our attention to the case

zX = 0.075; the results presented can then be considered as typical for the whole range of

input amplitudes.

Before proceeding with a discussion of this breakdown we make some comparison of our

results with those of Hall (1988). In figure 6 we present a plot of the growth rates an, (n =

1,..., 8) as a function of the downstream position x. Here we see that the growth rates,

after an initial adjustment stage wherein the flow adjusts in order to accommodate the

nonlinear terms, increase with increasing x; in fact the growth rates are ordered such that

o 1 > o'j-1, (j = 2,..., 8). However, the growth rate of the first harmonic, al, is decreased

from that found in the absence of the nonlinear terms; in this respect nonlinear effects

are stabilizing. This should be compared with the results of Hall (1988) who found a

similar result in that the growth of the first harmonic is decreased in comparison with that

obtained from the linearized system. However, an important distinction arises between

the present work and that of Hall (1988) in that for the case of O(1) G6rtler numbers and

wavenumbers the energy is distributed predominantly in the first harmonic and mean flow

correction whereas in the present case no such partition of energy is found.

We now turn our attention to a discussion of the breakdown alluded to above. As noted

earlier our numerical scheme was found to breakdown at some downstream position. This

breakdown was characterized by the normal, and subsequently the spanwise, components

of the velocity field undergoing a period of rapid growth over a small streamwise inter-

val, typically of the order of 5 streamwise steplengths, whereas the streamwise velocity

component shows little, if any, variation over this interval.

In order to determine whether this breakdown was due to a singularity of the governing

equations, we repeated our calculations with an increased number of Fourier modes re-

tained. As each higher harmonic is forced by its lower harmonics we would expect that,

if such a singularity were encountered, increasing the number of Fourier modes retained

in our calculations would have a dramatic effect upon the latter stages of the calculation.

However, this was found not to be the case. The inclusion of additional Fouricr modes was

11
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found to have little effect on the breakdown. For this reason we feel justified in eliminating

the possibility of a spanwise localized singularity in the governing equations as being the

underlying cause for the breakdown which is encountered.

In light of the above discussion an alternative mechanism for the breakdown must be found.

An obvious candidate immediately presents itself in the form of a singularity due to flow

separation. From the work of Hall (1988) we know that flow separation is encountered in

the problem of O(1) wavelength GSrtler vortices at O(1) G6rtler numbers (see also the

discussion in Hall and Horseman (1990)). As such, flow separation would appear as the

likely candidate for the breakdown experienced in the present problem.

In order to test this conjecture we calculated the total skin friction

N

r r(x,z) = 1 +  _u.y(x,o)coskr z, (3.4)
n_--.O

at each downstream position on a uniform spanwise grid of 100 points over one half vortex

wavelength. Here, we note that the first term on the right hand side of (3.4) arises from

the uniform shear, fi ,-_ Y, in the wall layer (see equation (2.8)). The point (X*, Z*) of

flow separation is then defined by

rr(X*,Z*) =0.

At such a point our finite difference discretization in the downstream variable X is no

longer valid as it does not allow for reversed flow. In figure 7 we present a contour plot of

(TT-- 1) in the (X, Z)-plane for X in the range (108,108.037) and Z in the range (0, r/a).

Here we see that, after an interval of little variation, the total skin friction rapidly decreases

until the last downstream location at which (TT--1) is negative and separation has occurred.

At this point in our calculation the numerical scheme used is no longer valid for the reason

given above. We found it impossible to accurately resolve the position at which separation

occurs, though not through any deficiency in the code, but due to the fact that we had

reached the limit of our available computing resources.

12



Not surprisingly, the point of separation is found to occur at the position Z = re�k, the

position at which upwelling occurs. In figure 8 we present a series of contour plots of

constant total streamwise velocity

N

v r(x,Y,Z) =Y +  .,v.(x,Y)cosknZ,
n-_O

at various downstream positions which shows the initial growth of the vortex. In the

absence of the nonlinear vortex these plots would appear as a series of equally spaced

horizontal lines. The growth of the vortex is then represented by increased curvature of

the streamlines of constant streamwise velocity. At X = 102.0 (figure 8a) the nonlinear

vortex has begun to grow until at X = 108.0 (figure 8d) we see the characteristic shape

for GSrtler vortices (see Hall and Horseman (1990)).

In figure 9a-e we again present contour plots of the total streamwise velocity at the last

five streamwise locations preceding the breakdown of our numerical code. At this stage

we see the development of a secondary structure localized about Z -- "z/a in the vicinity

of the wall (see the highlighted region in figure 9a). This structure increasingly distorts

the underlying streamlines until at the last point of our calculation (figure 9e) the flow

is about to become reversed. As noted above we were unable to continue our calculation

past the point given for figure 9e, however we would expect that if such a calculation were

possible we would find a small region of reversed flow centered about the point Z -- "z/a

which would subsequently increase in size as the calculation were continued downstream.

4. Conclusion

We have investigated the spatial nonlinear evolution of the fastest growing GSrtler vortex

which can occur in a boundary layer flow. The mode occurs in a quasi-parallel form only

at high GSrtler numbers so our investigation is particularly relevant to flows where high

Reynolds numbers and moderate curvatures are possible. Hence our investigation is, for

example, relevant to the flow over turbine blades and also to the flow in jet engine inlets

though compressible effects would certainly be present in the latter case. A crucial feature

of the mode is that it occurs adjacent to the wall so that relatively high shear stresses will

be induced by its presence.
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Our calculations suggest that the nonlinear development of the most unstable CSrtler

mode results in a revcrsed flow. Although such a point of separation gives little hope

of following the development of these modes downstream past the point of separation

we note one important point which arises from our calculations. Recent work on the

secondary instability of nonlinear GSrtler vortices at O(1) GSrtler number by Hail and

Horseman (1990) has demonstrated that the fully nonlinear vortex velocity fields obtained

numerically by Hall (1988) are highly susceptible to an inviscid Rayleigh instability. This

mode of instability is particularly relevant to flows for which the streamwise velocity field

becomes inflexional in both the streamwise and spanwise directions. Such a situation arises

in the present problem and hence we would expect the flow to be radically altered, due

to the linear growth of Rayleigh modes and their subsequent nonlinear evolution, before

the point of separation is approached, as is the case for GSrtler vortices at O(1) GSrtler

numbers (see Hall and Horseman (1990) for a discussion)). This question is currently

under investigation.

Thus we conclude then by noting that our calculations suggest that in relatively highly

curved boundary layers, transition will be induced by the Rayleigh instability breakdown of

the vortex structures driven by the GSrtler instability. It should be noted that alternative

instabilities such as Tollmien-Schlichting waves do not have growth rates as large as those

of GSrtler vortices or Rayleigh waves and are therefore likely to be unimportant in the

transition process.
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Figure 1. A schematic representation of the growth rate versus wavenumber in the large

G6rtler number limit. Marked are the regions corresponding to the inviscid, most unstable

and right-hand branch G6rtler modes, respectively.
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shows the position of the most unstable mode of Denier et al (1991).
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e = 0.001, broken line e = 0.002. In order to distinguish the plots for e = 0.002 these have

been offset by -0.5. Plotted is In(Ej)(j = 1,...,4) versus X.
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Figure 4. Comparison of results obtained by retaining different number of Fourier modes.

Solid line N -- 8, dashed line N = 16. In order to distinguish the plots for N = 16 these

have been offset by -0.5. Due to limitations on available computing time the results for

N = 16 were obtained for a streamwise step-length of e = 0.01.

19



co

tl

10

0

-10

-2O

-3O

-40
101 102 103

J

I I 1 I

104 105 106 107' 108

X

Figure 5. Plot of ln(Ej), (j = 1, • .., 8) versus downstream position X.

2O



,,+

.p.,,.

10

6

2

0II

II

I I

103 104

I I I I

105 106 107 "108

X

+ t 1 I l

103 104 105 106 107 108

x

Figure 6. The nonlinear growth rates aj (j = 1,..., 8) versus X.

21



X = 108

0.0 °

Z=_ _
k

0.0 X = I08.037

Figure 7. Contour plot of the skin friction (rT + 1) in the (X, Z)-plane, Here X is in the

interval (108,108.037) and Z is in the range (0, _r/a).
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Figure 8. Contour plot of the total downstream velocity field at the downstream positions;

(_) X = 102, (b) X = 104, (c) X : 106, (d) X = 108.
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calculation; (a) X = 108.032(b) X = 10S.033,(c) X = 108.034,(d) X = 108.035,(e)
X= 108.036.
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